DPP - Daily Practice Problems

Date : Start Time :	End Time :							
CHEM	ISTRY (CC07)							
SYLLABUS : Equilibrium								
Max. Marks : 180 Marking Scheme : + 4 for INSTRUCTIONS : This Daily Practice Problem Sheet contain Darken the correct circle/ bubble in the Response Grid prov	is 45 MCQ's. For each question only one option is correct.							
 If 1.0 mole of I₂ is introduced into 1.0 litre flask at 1000 K, at quilibrium (K_c = 10⁻⁶), which one is correct? (a) [I₂(g)] > [Γ(g)] (b) [I₂(g)] < [Γ(g)] (c) [I₂(g)] = [Γ(g)] (d) [I₂(g)] = ¹/₂[Γ⁻(g)] In a reaction, A+2B → 2C, 2.0 moleof 'A', 3.0 mole of 'B' and 2.0 mole of 'C' are placed in a 2.0 L flask and the equilibrium concentration of 'C' is 0.5 mol/L. The equilibrium constant (K) for the reaction is (a) 0.073 (b) 0.147 (c) 0.05 (d) 0.026 K_c for the reaction N₂(g) + O₂(g) → 2NO(g) at 300 K is 4.0 × 10⁻⁶. K_p for the above reaction will be (R=2 cal mol⁻¹ K⁻¹)	 4. ∆G° for the reaction X + Y Z is -4.606 kcal. The equilibrium constant for the reaction at 227°C is (a) 100 (b) 10 (c) 2 (d) 0.01 5. The equilibrium constant for the reaction SO₃(g) SO₂(g) + ¹/₂O₂(g) is K_c = 4.9 × 10⁻². The value of K_c for the reaction 2SO₂(g) + O₂(g) 2SO₃(g) will be (a) 9.8 × 10⁻² (b) 4.9 × 10⁻² (c) 416 (d) 2.40 × 10⁻³ 6. Four species are listed below: i. HCO₃ ii. H₃O⁺ iii. HSO₄⁻ iv. HSO₃F Which one of the following is the correct sequence of their acid strength? (a) iv<ii<ii<< li=""> (b) ii<iii<<i<< li=""> </iii<<i<<></ii<ii<<> 							
RESPONSE1. (a) b) C) (d)2. (a) b) C) (d)GRID6. (a) b) C) (d)	3. $(a)(b)(c)(d)$ 4. $(a)(b)(c)(d)$ 5. $(a)(b)(c)(d)$							

Get More Learning Materials Here : 📕

CLICK HERE

DPP/CC07

c-26

7. The degree of dissociation of dinitrogen tetroxide N_2O_4 (g) \longrightarrow 2NO₂(g) at temperature T and total pressure P is α . Which one of the following is the correct expression for the equilibrium constant (K_n) at this temperature?

(a)
$$\frac{2\alpha}{(1-\alpha^2)}$$
 (b) $\frac{\alpha^2 P}{1-\alpha}$
(c) $\frac{4\alpha^2}{(1-\alpha^2)}$ (d) $\frac{4\alpha^2 P}{(1-\alpha^2)}$

- The equilibrium constants K_{p_1} and K_{p_2} for the reactions 8. $X \rightleftharpoons 2Y$ and $Z \rightleftharpoons P + Q$, respectively are in the ratio of I : 9. If the degree of dissociation of X and Z be equal then the ratio of total pressures at these equilibria is (a) 1:1 (b) 1:36 (c) 1:3 (d) 1:9
- 9. The dissociation of a gas AB₂ at equilibrium can be represented as :

$$2AB_2(g) \Longrightarrow 2AB(g) + B_2(g)$$

The degree of dissociation is 'x' and is small compared to 1. The expression relating the degree of dissociation (x) with equilibrium constant K_p and total pressure P is : (a) (2K/P)(b) $(2K_P)^{1/3}$

(c)
$$(2K^{P}/P)^{1/2}$$
 (d) (K/F

(c) $(2K_p^{P}/P)^{1/2}$ (d) (K_p/P) 10. The exothermic formation of ClF_3 is represented by the equation :

 $Cl_2(g) + 3F_2(g) \rightleftharpoons 2ClF_3(g); \Delta H = -329kJ$ Which of the following will increase the quantity of CIF₃ in an equilibrium mixture of CI_2 , F_2 and CIF_3 ? (a) Adding F_2

- Increasing the volume of the container (b)
- (c) RemovingCl₂
- (d) Increasing the temperature

11. Match the columns Column-I Column-II A. $Q_c < K_c$ I. Net reaction goes from right to left. $Q_c > K_c$ B Ш. Net reaction goes from left to right. $Q_c = K_c$, A-I; B-II; C-III **III**. No net reaction occurs. C (b) A-III; B-II; C-I(a) (c) A-I; B-III; C-II

- (d) A-II; B-I; C-III
- 12. Which of the following statement(s) is/are correct? ΔG is negative, then the reaction is spontaneous and (i) proceeds in the forward direction,

- (ii) ΔG is positive, then reaction is non-spontaneous
- (iii) ΔG is 0, then reaction is at equilibrium
- (a) (i), (ii) and (iii) arc correct
- (i) and (ii) (b)
- (c) (ii) and (iii) are correct
- (d) only(iii) is correct
- 13. On the basis of Le Chatelier's principle, predict which of the following conditions would be unfavourable for the formation of SO₃? Given that

$$2SO_2 + O_2 \implies 2SO_3; \Delta H = -42 \text{ kcal}$$

- (a) Low pressure and low temperature
- (b)High pressure and low temperature
- High temperature and low pressure (c)
- (d) High concentration of SO₂
- 14. The standard Gibbs energy change at 300 K for the reaction $2A \implies B + C$ is 2494.2 J. At a given time, the composition

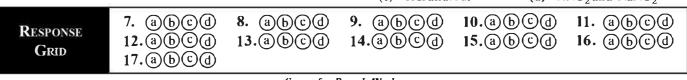
of the reaction mixture is $[A] = \frac{1}{2}$, [B] = 2 and $[C] = \frac{1}{2}$. The

- reaction proceeds in the : [R = 8.314 J/K/mol, e = 2.718]
- (a) forward direction because $Q < K_c$
- (b) reverse direction because $Q < K_c$
- (c) forward direction because $Q > K_c$
- (d) reverse direction because $Q > K_c$

15. If the equilibrium constant for $N_2(g) + O_2(g) \implies 2NO(g)$ is K, the equilibrium constant for

$$\frac{1}{2} N_2(g) + \frac{1}{2} O_2(g) \longrightarrow NO(g) \text{ will be:}$$

(a)
$$K^{\frac{1}{2}}$$
 (b) $\frac{1}{2}K$


(d) K² (c) K The following reaction is performed at 298 K. 16.

$$2NO(g) + O_2(g) \implies 2NO_2(g)$$

The standard free energy of formation of NO(g) is 86.6 kJ/ mol at 298 K. What is the standard free energy of formation of NO₂(g) at 298 K? ($K_p = 1.6 \times 10^{12}$)

(a)
$$86600 - \frac{\ln (1.6 \times 10^{12})}{R (298)}$$

- R (298)
- (b) $0.5[2 \times 86,600 R(298) \ln(1.6 \times 10^{12})]$
- (c) $R(298) \ln(1.6 \times 10^{12}) 86600$
- (d) $86600 + R(298) \ln(1.6 \times 10^{12})$
- Which of the following pairs constitutes a buffer? 17. NaOH and NaCI (b) HNO_3 and NH_4NO_3 (a) HCI and KCI (d) HNO_2 and $NaNO_2$ (C)

DPP/ CC07 -

	For dibasic acid correctore	ler is	24.	Which of the following statements are correct?				
	(a) $K_{a_1} < K_{a_2}$	(b) $K_{a_1} > K_{a_2}$		(i) Ionic product of water $(K_w) = [H^+][OH^-] = 10^{-14} M^2$				
	(c) $K_{a_1} = K_{a_2}^2$	(d) not certain		(ii) At 298K $[H^+] = [OH^-] = 10^{-7}$				
19.	1 2	$G = -RTlnK_p + RTlnQ_p$ and select		(iii) K_w does not depend upon temperature (iv) Molarity of pure water = 55.55M				
17.	the correct statement at equ	ilibrium		(a) (i), (ii) and (iii) (b) (i), (ii) and (iv)				
	(a) $\Delta G=0, Q_p > K_p$	the equilibrium reaction will		(c) (i) and (iv) (d) (ii) and (iii) (d) (ii)				
	р Г.	shift from left to right	25.					
	(b) $\Delta G=0, Q_p=K_p$	the equilibrium reaction will		acid and acetic acid are 1.8×10^{-4} and 1.8×10^{-6} respectively.				
	(c) $\Lambda C = m O < K$	shift from left to right		The concentration of acetic acid solution in which the				
	(c) $\Delta G = \infty, Q_p < K_p$	the equilibrium reaction will shift from right to left		hydrogen ion has the same concentration as in 0.001 M				
	(d) $\Delta G < 0, Q_p > K_p$	the equilibrium reaction will		formic acid solution is equal to (a) 0.001 M (b) 0.01 M				
	су уср р	shift from right to left		(c) 0.1 M (d) 0.0001 M				
	where Q _p and K _p term r	efer to reaction quotient and	26.	The first and second dissociation constants of an acid H ₂ A				
	equilibrium constant at constant pressure respectively.			arc 1.0×10^{-5} and 5.0×10^{-10} respectively. The overall				
20.				dissociation constant of the acid will be				
		must be added to a 3 L flask to		(a) 0.2×10^5 (b) 5.0×10^{-5} (c) 5.0×10^{15} (d) 5.0×10^{-15} .				
	obtain a Cl ₂ concentration (a) 4.2moles	(b) 2.1 moles	27	Equal volumes of three acid solutions of pH 3, 4 and 5 are				
	(c) 5.5 moles	(d) 6.3 moles	27.	mixed in a vessel. What will be the H ⁺ ion concentration in				
21.	In the following hypothetic			themixture?				
	$A + 3B \rightleftharpoons 2C + D$			(a) 1.11×10^{-4} M (b) 3.7×10^{-4} M				
	initial moles of A are twice	that of B. If at equilibrium moles	20	(c) 3.7×10^{-3} M (d) 1.11×10^{-3} M				
	of B and C are equal. Perce		28.	The solubility product of AgCl is 4.0×10^{-10} at 298 K. The solubility of AgCl in 0.04 M CaCl ₂ will be				
22		(c) 10% (d) 20%		(a) 2.0×10^{-5} M (b) 1.0×10^{-4} M				
22.	Bronsted base?	n act as both Bronsted acid and		(c) 5.0×10^{-9} M (d) 2.2×10^{-4} M				
	(a) Na_2CO_3	(b) OH ⁻	29.	The pH of a buffer containing equal molar concentrations				
				of a weak base and its chloride				
	(c) HCO_3^-	(d) NH_3		(K _b for weak base = 2×10^{-5} , log $2 = 0.3$) is (a) 5 (b) 9				
23.	Match the columns : Column-I	Column-I I		(a) 5 (b) 9 (c) 4.7 (d) 9.3				
	A. $N_2(g) + 3H_2(g)$		30.	In a saturated solution of the sparingly soluble strong				
	$2NH_3(g) (t = 300^{\circ}C)$			electrolyte $AgIO_3$ (molecular mass = 283) the equilibrium				
	B. $PCl_5(g) \longrightarrow PCl_3$	(g) Ⅲ. K _P <k<sub>C</k<sub>		which sets is $AgIO_3(s) \implies Ag^+(aq) + IO_3^-(aq)$. If the				
	$+ Cl_2(g) (t = 50^{\circ}C)$			solubility product constant K_{in} of AgIO ₃ at a given				
	C. $C(s) + H_2O(g)$	III. K _p not defined		temperature is 1.0×10^{-8} , what is the mass of AgIO ₃				
	2	$CO(g) + H_2(g)$		contained in 100 ml of its saturated solution?				
	D. $CH_3COOH(l) + C_2H_5(l)$			(a) 1.0×10^{-4} g (b) 28.3×10^{-2} g (c) 2.83×10^{-3} g (d) 1.0×10^{-7} g.				
	\leftarrow CH ₃ COOC ₂ H	H ₅ (l)	31.					
	$+H_2O(I)$		011	CH_3COONa and 0.10 M in $CH_3COOH?K_a$ for				
	(a) $A-II; B-I; C-IV; D$) — III		$CH_3COOH = 1.8 \times 10^{-5}$.				
	(b) $A-I; B-II; C-III; D$			(a) 3.5×10^{-4} (b) 1.1×10^{-5}				
	(c) $A-III; B-I; C-IV; I$			• • •				
	(d) A-IV; B-II; C-I; D	9–111		(c) 1.8×10^{-5} (d) 9.0×10^{-6}				
	18. (a)	bcd 19 abcd	20.	abcd 21.abcd 22.abcd				
	RESPONSE 23.(a)	bcd 24. abcd						
		bcd 29.abcd						
-	Space for Rough Work							

c-27

DPP/CC07

c-28

- 32. The K_{sp} for Cr(OH)₃ is 1.6×10^{-30} . The solubility of this compound in water is :
 - (a) $\sqrt[4]{1.6 \times 10^{-30}}$ (b) $\sqrt[4]{1.6 \times 10^{-30}/27}$
 - (d) $\sqrt{1.6 \times 10^{-30}}$ $1.6 \times 10^{-30/27}$ (c)
- 33. For the reaction CO (g)+ (1/2) O₂ (g) = CO₂ (g), K_{ν}/K_{c} is (a) *RT* (b) (RT)⁻¹
 - (c) (RT)-1/2 (d) $(RI)^{1/2}$

34. For the reaction : $2NO_{2(g)} \rightleftharpoons 2NO_{(g)} + O_{2(g)}$, $(K_c = 1.8 \times 10^{-6} \text{ at } 184^{\circ}\text{C}) \text{ (R} = 0.0831 \text{ kJ/(niol. K))}$ When K_p and K_c are compared at 184°C, it is found that (a) Whether K_{p} is greater than, less than or equal to K_{c} depends upon the total gas pressure

- (b) $K_p = K_c$
- (c) K_p^P is less than K_c (d) K_p is greater than K_c
- 35. A monobasic weak acid solution has a molarity of 0.005 and pH of 5. What is the percentage ionization in this solution? (a) 2.0 (b) 0.2 (c) 0.5 (d) 0.25
- 36. Values of dissociation constant, K_{μ} are given as follows : AcidK "

HCN6.2×10^{-1●} HF 6.6×10^{-4}

 7.2×10^{-4} HNO₂

Correct order of increasing base strength of the base CN-, F-and NO₂ will be:

- (a) $\Gamma^- < CN^- < NO_2^-$ (b) $NO_2^- < CN^- < F^-$ (c) $F^- < NO_2^- < CN^-$ (d) $NO_2^- < F^- < CN^-$
- 37. How many litres of water must be added to 1 litre of an aqueous solution of HCl with a pH of 1 to create an aqueous solution with pH of 2?
 - (a) 0.1 L (b) 0.9 L (c) 2.0 L (d) 9.0 L
- 38. The pH of aqueous solution of IM HCOONH₄, pK₃ of HCOOHis 3.8 and pKb of NH3 is 4.8 (a) 6.5 (b) 4.8
 - (c) 3.8 (d) 8.6
- **39.** Solid Ba(NO₃)₂ is gradually dissolved in a 1.0×10^{-4} M Na₂CO₃ solution. At what concentration of Ba²⁺ will a precipitate begin to form? (K_{SP} for for BaCO₃ = 5.1×10^{-9})

- (a) 5.1×10^{-5} M (b) $8.1 \times 10^{-8} \text{ M}$ (d) 4.1 × 10⁻⁵ M (c) 8.1×10^{-7} M
- 40. Solubility product of silver bromide is 5.0×10^{-13} . The quantity of potassium bromide (molar mass taken as 120g mol⁻¹) to be added to 1 litre of 0.05 M solution of silver nitrate to start the precipitation of AgBr is
 - (a) 1.2×10^{-10} g (b) $1.2 \times 10^{-9} \text{ g}$
 - (c) 6.2×10^{-5} g (d) 5.0×10^{-8} g
- 41. Three reactions involving $II_{A}PO_{A}^{-}$ are given below :
 - $H_3PO_4 + H_2O \rightarrow H_3O^+ + H_2PO_4^-$
 - (ii) $H_2PO_4^- + H_2O \rightarrow HPO_4^{2-} + H_3O^+$

(iii) $H_2PO_4^- + OH^- \rightarrow H_3PO_4 + O^{2-}$

In which of the above does $H_2PO_4^-$ act as an acid?

- (a) (ii)only (b) (i)and(ii)
- (c) (iii) only (d) (i) only
- Which solution has pH equal to 10? 42. (a) 10^{-4} M KOH (b) 10⁻¹⁰ M KOH (c) 10⁻¹⁰ M HCl (d) 10.-4MHCl
- Calculate the pH of 0.5 M aqueous solution of NaCN, the 43. $pK_b of CN^-$ is 4.70
 - (a) 4.70 (b) 11.5 (c) 7 (d) 6.5
- 44. For the following three reactions a, b and c, equilibrium constants are given:
 - $CO(g) \cdot H_2O(g) \rightleftharpoons CO_2(g) \cdot H_2(g); K_1$ (i)
 - $CH_4(g) \cdot H_2O(g) \rightleftharpoons CO(g) \cdot 3H_2(g); K_2$ (ii)
 - (iii) $CH_4(g)+2H_2O(g) \rightleftharpoons CO_2(g)+4H_2(g); K_3$

(a)
$$K_1 \sqrt{K_2} = K_3$$
 (b) $K_2 K_3 = K_1$

- (c) $K_3 = K_1 K_2$ (d) $K_3.K_2^3 = K_1^2$
- 45. A vessel at 1000 K contains CO2 with a pressure of 0.5 atm. Some of the CO₂ is converted into CO on the addition of graphite. If the total pressure at equilibrium is 0.8 atm, the value of K is :
 - 1.8 atm (b) 3attn (a)0.3 atm(c)
 - (d) 0.18atm

)©d 39.abcd	35.abcd 36. abc 40.abcd 41. abc 45.abcd 45.abc	
--	-------------	--	--

Space for Rough Work

DAILY PRACTICE PROBLEMS

CHEMISTRY SOLUTIONS

8.

1. (a) $I_2 \stackrel{2}{\longrightarrow} 2I^ 1-x \quad 2x$ $K_c = \frac{(2x)^2}{(1-x)} = 10^{-6}$

Soln. shows that $(1-x) > 2x \therefore [I_2(g)] > [I^-(g)]$

2. (c) $A + 2B \rightleftharpoons 2C$ Initial moles in 2 litres 2 3 2 At Equilibrium moles in 2 litres 2.5 4 1 Molar conc. moles in 2 litres 1.25 2 0.5

$$K_{c} = \frac{(0.5)^{2}}{(1.25)(2)^{2}} = 0.05$$

- 3. **(b)** $K_p = K_c (RT)^{\Delta n} \operatorname{since} \Delta n = 0, K_p = K_c.$ 4. **(a)** $\Delta G^o = -2.303 \operatorname{RT} \log K$
 - $-4.606 \times 10^3 = -2.303 \times 2 \times 500 \log K_c$ ∴ $K_c = 100.$

5. (c)
$$SO_3(g) \rightleftharpoons SO_2(g) + \frac{1}{2}O_2(g)$$

 $K_{c} = \frac{|SO_{2}||O_{2}|}{|SO_{3}|} = 4.9 \times 10^{-2};$

On taking the square of the above reaction

$$\frac{[SO_2]^2[O_2]}{[SO_3]^2} = 24.01 \times 10^{-4}$$

 $nowK'_{C} for 2SO_2(g) + O_2(g) = 2SO_3$

$$=\frac{[SO_3]^2}{[SO_2]^2[O_2]} = \frac{1}{24.01 \times 10^{-4}} = 416$$

6. (c) The correct order of acidic strength of the given species

is
$$\begin{array}{c} HSO_3F > H_3O^+ > HSO_4^- > HCO_3^-\\(iv) & (ii) & (iii) \\ or (i) < (iii) < (iv) \\ \end{array}$$

It corresponds to choice (c) which is correct answer.

$$N_2O_4 \xrightarrow{} 2NO_2$$

$$l - \alpha \qquad 2\alpha$$
Total moles at equ = $1 - \alpha + 2\alpha = 1 + \alpha$

$$K_{c} = \frac{p_{NO_{2}}^{2}}{p_{N_{2}O_{4}}} = \frac{\left(\frac{2\alpha}{1+\alpha}, P\right)^{2}}{\frac{1-\alpha}{1+\alpha}, P} = \frac{4\alpha^{2}P}{1-\alpha^{2}}$$

for the given reactions, we have

$$X \implies 2Y$$
Initial a moles 0
At equi a(1-ex) 2aa
(moles)
Total no. of moles = a (1-a) + 2aa
= a - aa + 2aa
= a (1+ex)
Now, $K_{P_1} = \frac{(n_Y)^2}{n_X} \times \left(\frac{P_{T_1}}{\sum n}\right)^{\Delta n}$
 $K_{P_1} = \frac{(2aex)^2 \cdot P_{T_1}}{[a(1-\alpha)][a(1+\alpha)]}$
 $Z \implies P + Q$
Initial b moles 0 0
At equi b (1-ex) bec bec
(moles)
Total no. of moles = b(1-a) + ba + ba
= b - ba + ba + ba
= b(1+a)
Now $K_{P_2} = \frac{n_Q \times n_P}{n_Z} \times \left[\frac{P_{T_2}}{\sum n}\right]^{\Delta n}$
or $K_{P_2} = \frac{(ba)(ba) \cdot P_{T_2}}{[b(1-\alpha)][b(1+a)]}$
or $\frac{K_{P_1}}{K_{P_2}} = \frac{4az^2 \cdot P_{T_1}}{(1-a^2)} \times \frac{(1-a)^2}{P_{T_2} \cdot a^2} = \frac{4P_{T_1}}{P_{T_2}}$
or $\frac{P_{T_1}}{R_{T_2}} = \frac{1}{9}$ [given: $\frac{K_{P_1}}{K_{P_2}} = \frac{1}{9}$

(b) Let the initial moles of X be 'a' and that of Z be 'b' then

i.c., (b) is the correct answer.(b) For the reaction

$$2AB_2(g) \rightleftharpoons 2AB(g) + B_2(g)$$

atequi 2(1-x) 2x x

🕀 www.studentbro.in

Get More Learning Materials Here : 📕

9.

s-21

DPP/CC07.

$$K_{c} = \frac{[AB]^{2}[B_{2}]}{[AB_{2}]^{2}} \text{ or } K_{c} = \frac{(2x)^{2} \times x}{\{2(1-x)\}^{2}}$$

= $x^3 [(1-x) \text{ can be neglected in denominator } (1-x)]$ $\simeq 1$]

The partial pressure at equilibrium are calculated on the basis of total number of moles at equilibrium. Total number of moles

$$= 2(1-x)+2x+x = (2+x)$$

$$\therefore P_{AB_2} = \frac{2(1-x)}{(2+x)} \times P$$
, where P is the total pressure.

$$P_{AB} = \frac{2x}{(2+x)} \times P, \quad P_{B_2} = \frac{x}{(2+x)} \times P$$

Since x is very small so can be neglected in denominator thus, we get

$$P_{AB_2} = (1-x) \times P \qquad P_{AB} = x \times P$$

$$P_{B_2} = \frac{x}{2} \times P$$
Now, $K_p = \frac{(P_{AB})^2 (P_{B_2})}{(P_{AB_2})^2}$

$$= \frac{(x)^2 \times P^2 \cdot P \times \frac{x}{2}}{(1-x)^2 \times P^2}$$

$$= \frac{x^3 \cdot P^3}{2 \times 1 \times P^2} \quad [\therefore 1-x \approx 1]$$

$$= \frac{x^3 \cdot P}{2} \text{ or } x^3 = \frac{2 \cdot K_p}{P} \text{ or } x = \left(\frac{2K_p}{P}\right)^{\frac{1}{3}}$$

- 10. (a) The reaction given is an exothermic reaction thus according to Le Chatelier's principle lowering of temperature, addition of F_2 and Cl_2 favour the forward direction and hence the production of ClF_3 .
- 11. (d)
- 12. (a)
- (c) Since reaction is exothermic hence low temperature will favour forward reaction also volume is decreased by applying high pressure.

14. (d) $\Delta G^{\circ}=2494.2 J$

$$2A \Longrightarrow B+C.$$

R=8.314 J/K/mol.

$$[A] = \frac{1}{2}, [B] = 2, [C] = \frac{1}{2}$$
$$Q = \frac{[B][C]}{[A]^2} = \frac{2 \times \frac{1}{2}}{\left(\frac{1}{2}\right)^2} = 4$$

 $\Delta G^{\circ} = -2.303 \text{ RT} \log K_{c}$ 2494.2J=-2.303 × (8.314 J/K/mol) × (300K) logK_c

$$\Rightarrow \log K_c = -\frac{2494.2 \text{ J}}{2.303 \times 8.314 \text{ J/K}/\text{mol} \times 300 \text{K}}$$

$$\Rightarrow \log K_c = -0.4341$$

$$K_c = 0.37$$

$$Q > K_c$$

15. (a)
$$N_2(g) + O_2(g) \implies 2NO(g)$$

$$K \cdot \frac{[NO]^2}{[N_2][O_2]}$$

$$\frac{1}{2}N_2 \cdot \frac{1}{2}O_2 \xrightarrow{} NO$$

$$K \cdot \cdot \frac{[NO]}{[N_2]^{1/2}[O_2]^{1/2}} \cdot K^{1/2}$$

16. (b)
$$\Delta G^{\circ}_{NO(2)} = 86.6 \text{ J/mol} = 86600 \text{ J/mol}$$

 $G^{\circ}_{N \bullet_{2}(g)} = x J/mol$ $T = 298, K_{p} = 1.6 \times 10^{12}$ $\Delta G^{\circ} = -RT \ln K_{p}$ Given equation, $2NO(g) + O_{2}(g) \rightleftharpoons 2NO_{2}(g)$ $\therefore 2\Delta G^{\circ}_{NO2} - 2\Delta G^{\bullet}_{NO} = -R (298) \ln (1.6 \times 10^{12})$ $2\Delta G^{\circ}_{NO2} - 2 \times 86600 = -R (298) \ln (1.6 \times 10^{12})$ $2\Delta G^{\circ}_{NO2} = 2 \times 86600 - R (298) \ln (1.6 \times 10^{12})$

$$\Delta G^{\circ}_{NO2} = \frac{1}{2} \left[2 \times 86600 - R(298) \ln (1.6 \times 10^{12}) \right]$$

 $= 0.5 \left[2 \times 86600 - R(298) \ln (1.6 \times 10^{12}) \right]$

- 17. (d) HNO_2 is a weak acid and $NaNO_2$ is salt of that weak acid and strong base (NaOH).
- 18. (b) In dibasic acids the loss of second proton occurs much less readily than the first. Usually the K_a values for successive loss of protons from these acids differ by at least a factor of 10^{-3} i.e., $K_{a_1} > K_{a_2}$

$$H_2 X \Longrightarrow H^{\bullet} \cdot H X^{\bullet} \cdot K_{a_1} \cdot H X^{\bullet} = H^{\bullet} \cdot X^{2 \bullet} \cdot K_{a_2} \cdot H^{\bullet} \cdot X^{2 \bullet} \cdot K^{\bullet} \cdot K^{\bullet$$

- 19. (b) Van't Hoff reaction isotherm is $\Delta G = \Delta G^{\circ} + RT \ln Qp$ When the reaction is in a state of equilibrium $\Delta G = 0$ Then $\Delta G^{\circ} = -RT \ln Q_{p} = -RT \ln K_{p}$
- 20. (b) At equilibrium the moles of Cl_2 must $bc = 0.15 \times 3 = 0.45$

PCl₅
$$\longrightarrow$$
 PCl₃ + Cl₂
 $\frac{x - 0.45}{2}$ $\frac{0.45}{2}$ $\frac{0.45}{2}$ Eqb.Conc.

Get More Learning Materials Here :

CLICK HERE

DPP/CC07

Let the volume of each solution in mixture be 1L, then total volume of mixture solution L = (1 + 1 + 1)L = 3LTotal $[H_3O]^+$ ion present in mixture solution $=(10^{-3}+10^{-4}+10^{-5})$ moles Then [H₃O]⁺ ion concentration of mixture solution $=\frac{10^{-3}+10^{-4}+10^{-5}}{3}M=\frac{0.00111}{3}M$ $= 0.00037 \,\mathrm{M} = 3.7 \times 10^{-4} \,\mathrm{M}$ 28. (c) Solubility of AgCl $[Ag^+] = \frac{K_{sp}}{[C1^-]} = \frac{4 \times 10^{-10}}{0.08} = 5.0 \times 10^{-9} M$ [0.08 M is concentration of [Cl⁻] from CaCl₂] $pOH = -\log K_b + \log \frac{[SALT]}{[BASF]}$ 29. (d) $= -\log K_{b} \left(\text{since} \frac{\text{SALT}}{\text{BASE}} = 1 \right)$ $=-\log 2 \times 10^{-5} = 4.7$ pH+pOH=14:. pH=9.3 30. (c) Lct s = solubility $\Lambda gI \bullet_3 \Longrightarrow \Lambda g' \cdot IO_3'$ $K_{sp} = [Ag^{+}] [IO_{3}^{5}] = s \times s = s^{2}$ Given $K_{sp} = 1 \times 10^{-8}$ $\therefore \quad s = \sqrt{\mathrm{K_{sp}}} = \sqrt{1 \times 10^{-8}}$ = 1.0×10^{-4} mol/lit = $1.0 \times 10^{-4} \times 283$ g/lit (: Molecular mass of Ag $1O_3 = 283$) $=\frac{1.0\times10^{-4}\times283\times100}{1000}\,\mathrm{gm}/100\mathrm{ml}$ $=2.83 \times 10^{-3} \text{ gm}/100 \text{ ml}$ 31. (d) $pH = pK_a + \log \left| \frac{Salt}{Acid} \right|$ $\log[H^+] = \log K_a - \log \left[\frac{Salt}{Acid}\right]$ $\log \left[H^{+} \right] = \log K_{a} + \log \left[\frac{\text{Acid}}{\text{Salt}} \right]$ $\begin{bmatrix} H^+ \end{bmatrix} = K_a \begin{bmatrix} Acid \\ Salt \end{bmatrix}$ $= 1.8 \times 10^{-5} \times \frac{0.1}{0.2} = 9 \times 10^{-6}$ **32.** (b) $Cr(OH)_3(s) = Cr^{3+}(aq.) + 3OH^{-}(aq.)$ 35 $(s) (3s)^3 = K_{sp}$ $27S^4 = K_{sp}$ $s = \left(\frac{K_{sp}}{27}\right)^{1/4} = \left(\frac{1.6 \times 10^{-30}}{27}\right)^{1/4}$

Get More Learning Materials Here : 📕

CLICK HERE

🕀 www.studentbro.in

s-23

DPP/CC07.

33. (c)
$$K_p = K_c (RT)^{\Delta n}$$
;

$$\Delta n = 1 - \left(1 + \frac{1}{2}\right) = 1 - \frac{3}{2} = -\frac{1}{2}, \quad \therefore \quad \frac{K_p}{K_c} = (RT)^{-1/2}$$

34. (d) For the reaction: $2NO_2(g) \Longrightarrow 2NO(g) + O_2(g)$

Given $K_c = 1.8 \times 10^{-6}$ at 184 °C R = 0.0831 Kj/mol. K $K_p = 1.8 \times 10^{-6} \times 0.0831 \times 457 = 6.836 \times 10^{-6}$ [$\because 184^{\circ}C = (273 + 184) = 457k, \Delta n = (2 + 1, -1) = 1$] Hence it is clear that $K_p > K_c$

35. (b)
$$HA \longrightarrow H^+ + A^-$$

$$K_{a} = \frac{[H^{+}][A^{-}]}{[HA]}, \quad \because \quad [H^{+}] = 10^{-pH}$$

$$\therefore \quad [H^{+}] = 10^{-5}; \text{ and at equilibrium } [H^{+}] = [A^{-}]$$

$$\therefore \quad K_{a} = \frac{10^{-5} \times 10^{-5}}{0.0015} = 2 \times 10^{-8}$$
$$\mathbf{e} = \sqrt{\frac{K_{a}}{C}} = \sqrt{\frac{2 \times 10^{-8}}{.005}} = \sqrt{4 \times 10^{-6}} = 2 \times 10^{-3}$$

Percentage ionization = 0.2

36. (c) Higher the value of K_a lower will be the value of pK_a i.e. higher will be the acidic nature. Further since CN^- , F^- and NO_2^- are conjugate base of the acids HCN, HF and HNO₂ respectively hence the correct order of base strength will be $F^- < NO_2^- < CN^-$

(: stronger the acid weaker will be its conjugate base)

37. (d)
$$\therefore pH=1$$
; $H^{+}=10^{-1}=0.1 \text{ M}$
 $pH=2$; $H^{+}=10^{-2}=0.01 \text{ M}$
 $\therefore M_{1}=0.1 \text{ V}_{1}=1$
 $M_{2}=0.01 \text{ V}_{2}=?$
From
 $M_{1}\text{ V}_{1}=M_{2}\text{ V}_{2}$
 $0.1 \times 1=0.01 \times \text{ V}_{2}$
 $\text{ V}_{2}=10 \text{ litres}$
 $\therefore \text{ Volume of water added}=10-1=9 \text{ litres}$

38. (a) HCOONH₄ is a salt of weak acid and weak base; $pH = \frac{1}{2} pK_w + \frac{1}{2} pK_a - \frac{1}{2} pK_b$ $\therefore pH = \frac{1}{2} \times 14 + \frac{1}{2} \times 3.8 - \frac{1}{2} \times 4.8$; pH = 6.5

39. (a)
$$Na_2CO_3 \longrightarrow 2Na^+ + CO_3^{2-}$$

 $1 \times 10^{-4}M \qquad 1 \times 10^{-4}M \qquad 1 \times 10^{-4}M$

 $K_{SP(BaCO_3)} = [Ba^{2+}][CO_3^{2-}]$

$$[Ba^{2+}] = \frac{5.1 \times 10^{-9}}{1 \times 10^{-4}} = 5.1 \times 10^{-5} M$$

40. (b) $AgBr \longrightarrow Ag^{\bullet} \cdot Br^{\bullet}$

 $K_{sp} = [Ag^+] [Br^-]$ For precipitation to occur Ionic product > Solubility product

$$[Br^{\bullet}] \cdot \frac{K_{sp}}{[Ag^{\bullet}]} \cdot \frac{5 \cdot 10^{\circ}}{0.05} \cdot 10^{\circ} 11$$

i.e., precipitation just starts when 10^{-11} moles of KBr is added to 1/ AgNO₃ solution

: Number of moles of Br⁻ needed from KBr = 10^{-11}

: Mass of KBr = $10^{-11} \times 120 = 1.2 \times 10^{-9}$ g

41. (a) (i)
$$\begin{array}{c} H_3PO_4 + H_2O_4 \longrightarrow H_3O^+ + H_2PO_4^-\\ acid_1 & base_2 & acid_2 & base_1 \end{array}$$

(ii) $H_2PO_4^-+H_2O---\rightarrow HPO_4^{2-}+H_3O^+$ acid, base₂ base₁ acid₂

(iii)
$$\begin{array}{c} H_2PO_4^-+OH^- \longrightarrow H_3PO_4^-+O_{acid_1}^{2-} \\ hase_1 \\ acid_2 \\ \end{array} \xrightarrow{} H_3PO_4^-+O_{base_2}^{2-} \end{array}$$

Hence only in (ii) reaction $H_2PO_4^-$ is acting as an acid.

- 42. (a) $pOH = -\log [OH^{-}]$ pH + pOH = 14For $10^{-4}KOH$, $[OH^{-}] = 10^{-4}$ $pOH = -\log [OH^{-}] = -\log 10^{-4} = 4$ pH = 14 - pOH = 10
- 43. (b) NaCN is a salt of strong base and weak acid ; pH

$$=7+\frac{1}{2}pK_{a}+\frac{1}{2}logC$$

 pK_{a} for HCN = 14-4.70 = 9.30

:. pH = 7 +
$$\frac{1}{2}$$
 × 9.30 + $\frac{1}{2}$ log0.5; pH = 11.5

- 44. (c) Reaction (c) can be obtained by adding reactions (a) and (b) therefore $K_3 = K_1$. K_2 Hence (c) is the correct answer.
- 45. (a) $CO_2 + C_{(grapnite)} \implies 2CO$ $P_{initial} 0.5atm \bullet$ $P_{final} (0.5-x)atm 2x atm$ Total P at equilibrium = 0.5-x+2x=0.5+x atm 0.8 = 0.5+x $\therefore x = 0.8-0.5=0.3$ atm Now $k_p = (P_{C\Phi})^2 / P_{C\Phi_2}$ $= \frac{(2 \times 0.3)^2}{(0.5-0.3)} = \frac{(0.6)^2}{(0.2)} = 1.8$ atm

🕀 www.studentbro.in